
Tetrahedron Letters No. 22, pp.827-829, 1961. Pergamon Press Ltd. Printed in Great Britain.

REDUCTION OF HEXACHLOROACETONE BY 1-BENZYL-1,4-DIHYDRONICOTINAMIDE¹ Donald C. Dittmer,² Louis J. Steffa, John R. Potoski³ and Roger A. Fouty Department of Chemistry, University of Pennsylvania Philadelphia 4, Pennsylvania

(Received 23 November 1961)

HEXACHLOROACETONE is very readily reduced to hexachloroisopropanol by 1-benzyl-1,4-dihydronicotinamide. The reduction goes violently at room temperature in the absence of solvent, is exothermic, and is accompanied by formation of a black tar. Even at 0⁰ the reaction went vigorously.

827

¹ This reaearch was supported in part by a grant from the National Science Foundation.

² Present address, Central Research Department, E.I. du Pont de Nemours and Company, Wilmington, Delaware.

³ National Science Foundation Summer Research Participant, 1961.

No.22

solubility of hexachloroacetone was low. The best yield of hexachloroisopropanol in the absence of solvent was 24%. Hydrolysis of the reaction mixtures with dilute hydrochloric acid gave hexachloroisopropanol (m.p. $87-87.5^{\circ}$), which was identified by its melting point, elemental analysis, infra-red spectrum, and mixed melting point with an authentic sample.⁴ A blank run in formamide in which the dihydro compound was absent gave no hexachloroisopropanol. Nicotinamide-1-benzylochloride was identified by its melting point (232-238°), mixed melting point with an authentic sample (no depression), and by the identity of its infra-red spectrum with that of an authentic sample.

The reduction of a "true" ketone in good yield by a dihydronicotinamide model for the coenzyme, dihydrodiphosphopyridine nucleotide (dihydronicotinamide-adenine-dinucleotide), has not yet been accomplished. Pyruvic acid has been reduced to lactic acid in 5-7% yield by 5-(2,4-dinitrophenylthio)-1-(2,6-dichlorobenzyl)-1,4-dihydronicotinamide.⁵ Alloxan is reduced rapidly, although in unstated yield, by 1-methyl or 1-n-propyl-1,4dihydronicotinamide in water at 0° and pH 6-11.⁶ Pyruvic acid,^{6,7} benzoylformic acid⁷ and benzil⁸ are reduced in low yield by 2,6-dimethyl-3,5-dicarboethoxy-1,4-dihydropyridine, which is not strictly analogous to a 1-substituted dihydronicotinamide. The olefinic double bond of 1-phenyl-4,4,4-trifluoro-2-buten-1-one is reduced in good yield by 1,2,6-trimethyl-

 ⁴ M. Geiger, E. Usteri and C. Gränacher, <u>Helv.Chim.Acta</u> <u>34</u>, 1335 (1951); W. Gerrard and B.K. Howe, <u>J.Chem.Soc</u>. 505 (1955); O. Neunhoeffer and A. Spange, <u>Liebigs Ann.</u> <u>632</u>, 22 (1960).

⁵ K. Wallenfels and D. Hofmann, <u>Tetrahedron Letters</u> No. 15, 10 (1959).

⁶ D. Mauzerall and F.H. Westheimer, <u>J.Amer.Chem.Soc.</u> <u>77</u>, 2261 (1955).

⁷ R. Abeles and F.H. Westheimer, <u>J.Amer.Chem.Soc</u>. <u>80</u>, 5459 (1958).

^b E.A. Braude, J. Hannah and R. Linstead, <u>J.Chem.Soc</u>. 3257 (1960). The reduction of benzil in low yield by 1-benzyl-1,4-dihydronicotinamide in the absence of solvent has been observed by J.M. Kolyer, Ph.D. Thesis, University of Pennsylvania, p.159 (1960).

No.22

The ready reduction of hexachloroacetone reported here may be attributed to an increase in the positive character of the carbonyl carbon. The facile reduction of thiobenzophenones by 1-benzyl-1,4-dihydronicotinamide is suggested as being caused by the greater polarity of the thiocarbonyl group.¹⁰ Previous work on the reduction of aromatic nitro and nitroso compounds has indicated that the more electron-deficient the nitrogen atom was, the more readily the group was reduced by 1-substituted dihydronicotinamides.¹¹ The electron-withdrawing trifluoromethyl group promotes the nonenzymic reduction of a double bond by 1,2,6-trimethyl-3,5-dicarboethoxy-1,4-dihydropyridine.⁹

Chloral is reduced in 3% yield to 2,2,2-trichloroethanol by 1-benzyll,4-dihydronicotinamide in the absence of solvent or in chloroform or acetone. The alcohol was identified by gas chromatography and by comparison of its infra-red spectrum with that of an authentic sample.

When the reduction of hexachloracetone was done in acetone, nitromethane or cyclohexene, nicotinamide-1-benzylochloride precipitated quickly; in the case of cyclohexene a yield in excess of 90% was formed within 15 min but no hexachloroisopropanol was detected. The yield of chloride ion in cyclohexene solvent appears to be a function of the purity of the cyclohexene.

B.E. Norcross, P.E. Klinedinst, Jr. and F.H. Westheimer, Abstracts of Papers, p.74 Q. 140th Meeting, American Chemical Society, Chicago, Illinois, September, 1961.

¹⁰ R.H. Abeles, R.F. Hutton and F.H. Westheimer, <u>J.Amer.Chem.Soc</u>. <u>79</u>, 712 (1957).

¹¹ D.C. Dittmer and J.M. Kolyer, <u>J.Org.Chem</u>. In press.